Computational study of the activated O(H) state in the catalytic mechanism of cytochrome c oxidase.
نویسندگان
چکیده
Complex IV in the respiratory chain of mitochondria and bacteria catalyzes reduction of molecular oxygen to water, and conserves much of the liberated free energy as an electrochemical proton gradient, which is used for the synthesis of ATP. Photochemical electron injection experiments have shown that reduction of the ferric/cupric state of the enzyme's binuclear heme a3/CuB center is coupled to proton pumping across the membrane, but only if oxidation of the reduced enzyme by O2 immediately precedes electron injection. In contrast, reduction of the binuclear center in the "as-isolated" ferric/cupric enzyme is sluggish and without linkage to proton translocation. During turnover, the binuclear center apparently shuttles via a metastable but activated ferric/cupric state (O(H)), which may decay into a more stable catalytically incompetent form (O) in the absence of electron donors. The structural basis for the difference between these two states has remained elusive, and is addressed here using computational methodology. The results support the notion that CuB[II] is either three-coordinated in the O(H) state or shares an OH(-) ligand with heme a3 in a strained μ-hydroxo structure. Relaxation to state O is initiated by hydration of the binuclear site. The redox potential of CuB is expected, and found by density functional theory calculations, to be substantially higher in the O(H) state than in state O. Our calculations also suggest that the neutral radical form of the cross-linked tyrosine in the binuclear site may be more significant in the catalytic cycle than suspected so far.
منابع مشابه
QM/MM Study on the Mechanism of Aminophenol Oxidation by Functionalized β-Cyclodextrin as Oxidase Nanomimic
In this study, functionalized β-cyclodextrin (β-CD) by aldehyde group was investigated as an oxidase enzyme mimic for the amino phenol oxidation. All calculations were performed by GAUSSIAN 09 package using two layers ONIOM method at the ONIOM (MPW1PW91/6-311++G(d,p)/UFF) level. In the first step, H2O2 is encapsulated in the hydrophobic cavity. In the second step, H2<...
متن کاملMolecular Characterization and Phylogeny Analysis Based on Sequences of Cytochrome Oxidase gene From Hemiscorpius lepturus of Iran
Abstract: Background: Hemiscorpius lepturus is a medically important scorpion found along the Iranian borders, especially near to Khuzestan Province in the south-west of Iran. This is the only non-buthid scorpion which is potentially lethal in southern Iran and is responsible for severe dermonecrotic scorpionism. OBJECTIVES: In this study, DNA fragment of the mitochondrial cytochrome c oxidase ...
متن کاملComputational Study of the Mechanism, Reaction Rate and Thermochemistry of Atmospheric Oxidation of Methylamine with Singlet Oxygen
The reaction of CH₃NH₂ with O₂ on the singlet potential energy surfaces (PES) was carried out using the B3LYP, CCSD(T) and G3B3 theoretical approaches along with 6-311++G(3df,3pd) basis set. The suggested mechanism for the title reaction consists of one pre-reactive complex. From the pre-reactive complex, nine types of products, CH2NH+H2O2, CH3NH+OOH,...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملCatalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate.
The cytochrome bd ubiquinol oxidase from Escherichia coli couples the exergonic two-electron oxidation of ubiquinol and four-electron reduction of O(2) to 2H(2)O to proton motive force generation by transmembrane charge separation. The oxidase contains two b-type hemes (b(558) and b(595)) and one heme d, where O(2) is captured and converted to water through sequential formation of a few interme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 42 شماره
صفحات -
تاریخ انتشار 2013